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Abstract. Long self-avoiding walks of up to 2400 steps have been generated on the sc and 
BCC lattices using an improved Monte Carlo technique. Analysis of the asymptotic length 
dependence of the end-to-end distance and radius of gyration of the walks leads to values 
in the range 0.591-0.593 for the critical exponent v. The simple power-law dependence 
on length provides an excellent fit to the data over walk lengths between 120 and 2400 
with fluctuations around the asymptotic results averaging to a mere 0.13%. Systematic 
deviations from asymptotic behaviour in short self-avoiding walks have also been examined 
using Monte Carlo generated walks ranging in length from 12 to 60; the results do not 
support the existence of the non-analytic correction predicted by the renormalisation group. 
In the light of this unexpected result, available series expansions for walks on  the FCC 

lattice have been re-examined and previous claims to have observed non-analytic behaviour 
questioned; equal, if not better convergence of the extrapolated series can be obtained 
without resorting to non-analytic correction terms. Finally, an analysis has been made of 
the radius of gyration series to which several new terms have been added. 

1. Introduction 

The properties of self-avoiding walks (SAWS) on three-dimensional lattices have been 
studied extensively since it was realised that the SAW might serve as a useful model 
for the conformational properties of a polymer chain in dilute solution. Prior to the 
advent of the renormalisation group ( RG), numerical results obtained through the use 
of exact enumeration and Monte Carlo techniques were interpreted as supporting the 
'mean-field' result for the asymptotic form of the mean-square end-to-end distance of 
the SAW, namely 

R', - AN2",  

where N denotes the number of steps and A is a constant (the subject is reviewed 
in McKenzie (1976). A similar result was found to apply to the mean-square radius 
of gyration as well (Rapaport 1975). 

The SAW can also be regarded as the n = 0 limit of the n-component vector spin 
model; RG analysis of this model yields the result v = 0.588 i 0.001 and firmly excludes 
the previously accepted estimate (Baker et a1 1978, Le Guillou and Zinn-Justin 1980). 
The same RG analysis also makes aprediction of the leading-order correction term to ( 1.1) 

( 1.2) 
with A ,  = 0.47 * 0.03. The significant feature of this result is that the correction term is 
non-analytic as N + a. The next correction term ( N - ' )  has also been included for 
later use; prior to the RG result it would have constituted the leading correction to 

R k  - A N 2 " (  1 + A ,  N-Al + A 2 N - '  + O( N - ' - A l ) )  
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( 1 . 1  ). Evidence for the non-analytic correction term has been presented recently 
based on  series and  Monte Carlo analyses (Majid et al 1983, Havlin and  Ben-Avraham 
1983). 

The asymptotic N-dependence of the number of SAWS of N steps, cN, has also 
been extensively studied. Until recently the data were interpreted as having asymptotic 
behaviour 

c,h - B ~ ' ~ N ~ - ' ,  Y = 6 ,  (1.3) 

where p is the connective constant (or effective coordination number) of the lattice 
and B a constant (Sykes et a1 1972). The RG, on the other hand, leads to the prediction 

( 1.4) 

7 

cM - B p " N Y - l (  1 + B ,  N-"]  + B 2 N - '  + O( N-'-A~))  

with y = 1.16 1 * 0.003. Evidence in support of this result has been adduced from series 
analysis (McKenzie 1979). 

The purpose of this paper is threefold. First, a new extensive Monte Carlo study 
of the three-dimensional SAW problem is described, with particular emphasis on those 
R', results which ought to shed light on the nature of the non-analytic corrections. 
We provide evidence that the exponent v lies slightly above the RG prediction but 
distinctly below the old value; an  analysis of the deviations from asymptotic behaviour 
does not support the existence of the Rc-predicted non-analytic correction, but indicates 
an N- '  type deviation. Second, we reanalyse existing exact enumeration series for 
both cN and Rkr on the FCC lattice and show that results of similar quality can be 
obtained both with and  without the inclusion of the non-analytic correction term. A 
closer look at the behaviour of the correction terms at successive orders-an 
examination not included in the earlier work-provides a strong hint that the non- 
analytic corrections are not in fact present. Third, we describe an  extension of the 
series for S', to N = 12 walks, the same length as for R',; analysis yields an  exponent 
estimate consistent with Monte Carlo but with a small discrepancy due to a lack of 
adequate convergence. 

The layout of the paper is as follows. In § 2 we describe the Monte Carlo method 
and the predicted asymptotic behaviour of the conformational quantities R', and S',; 
these results are based on the study of long SAWS. In 5 3 attention is focused on shorter 
walks and  the deviations from asymptotic behaviour are examined. Section 4 covers 
the revised analysis of the R', series expansion and  the new S', results. The cN series 
is reanalysed in 0 5. The results are summarised in 0 6 and the existence of similar 
problems in two dimensions discussed. 

2. Monte Carlo analysis of asymptotic behaviour 

There have been a number of attempts in the past to investigate the properties of SAWS 

using Monte Carlo ( M C )  methods (e.g., Gans 1965, McCrackin et a1 1973; further 
references appear in McKenzie 1976), but, with only one exception (Havlin and  
Ben-Avraham 1983) which did not involve addressing the asymptotic behaviour 
directly, there have been no attempts to improve earlier exponent estimates (which 
leaned towards v = ;) in the light of the RG predictions. In this paper we will show 
that the MC method is capable of producing extremely precise exponent estimates, free 
both from the need to rely on assumptions regarding the nature of the correction terms 
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and from subjective estimates of error bounds. In this section we briefly describe the 
MC method and the earlier methods from which it was derived, and the results it 
produces for walks long enough to be well inside the asymptotic regime. 

The goal of the MC method is to generate a sample of SAW conformations which 
is a representative (and hence unbiased) subset of the ensemble of all possible confor- 
mations; an average over the subset of a particular quantity should then be a reliable 
estimator for the ensemble average of that quantity. In principle, all that must be done 
is to randomly generate a batch of SAWS of the desired length and compute the necessary 
averages. The reason why this approach is unfeasible is that there is a serious problem 
of attrition; essentially all walks attempt to return to a previously visited lattice site 
after only a few steps, at which stage this simplest of MC approaches discards the 
entire walk and starts afresh. 

In order to overcome the attrition problem the enrichment scheme was proposed 
(Wall et a1 1963). With enrichment, when the self-avoidance condition is about to be 
violated the entire walk is not discarded as before, but only a specified number of the 
most recently added steps; the remaining portion of the walk is used as the basis for 
further attempts to complete the construction. The original approach employed step-by- 
step generation, dividing the walk into sections of s steps and using each newly added 
section exactly p times in a series of attempts to add sufficient steps to complete a 
further section. Failure resulted in deletion of the last complete section, and so on. 
The optimal values of the parameters p and s are functionally related (Wall et al 1963) ; 
the criteria used to select the values are to maximise the probability of successfully 
completing each SAW once started, and at the same time to ensure that no single initial 
section of the walk leads to a disproportionately large number of completed SAWS. 

The method is clearly unbiased and, if the above precaution observed, also statistically 
reliable. 

The efficiency of the enrichment technique is enhanced if it is combined with the 
dimerisation technique of SAW generation. Dimerisation was proposed as an alternative 
method of reducing attrition (Alexandrowicz and Accad 1973) and involves construct- 
ing each SAW by randomly combining members of a previously generated selection of 
shorter SAWS (the term dimerisation reflects the fact that the walk length doubles at 
each construction stage). 

The MC walk generation method used in the present work involves the following 
three stages. Using exact enumeration techniques a list of all possible short SAW 

elements of a given length (typically N = 6 )  is prepared; this preliminary stage is 
included to make the second stage more efficient. The next stage is to generate a large 
batch of SAWS (typically 20 000) of specified intermediate length ( N  = 60) by using the 
principle embodied in enrichment MC to link together randomly selected subsets of 
the SAW elements; the resulting SAWS are referrred to as segments. The final stage is 
the generation of SAWS of the desired length (a  multiple of the segment length) by 
again using the enrichment technique, but this time applied to the set of segments. 
The effective size of the segment set is considerably enlarged by randomly permuting 
and reflecting the coordinates of each segment before attempting to join it with the 
previously linked segments. The number of SAWS generated from each segment batch 
depends on the walk length-the longer the walk the fewer the number of walks in 
order to maintain adequate sampling; the segment and SAW generation steps are 
repeated as many times as needed (up to 20) to produce the required number of SAWS. 

The enrichment parameters are determined empirically ; as in the original application 
of the enrichment technique the two conflicting considerations are the improvement 
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of the SAW completion rate while preventing any given initial element or segment from 
leading to too many completions. 

The generated SAWS ranged in length from N = 120 to 2400 for both the sc and  
BCC lattices; sample sizes lay in the range 40-50 000. In comparison with previous MC 

work on SAWS, both the maximum walk length and  sample size have been enlarged 
considerably; if the product of these two quantities is taken as a rough measure of the 
‘extent’ of the calculation, then the present analysis is 20-30 times more extensive than 
its predecessors. The reasons for making the effort to maximise both these quantities 
are obvious; large N allows deeper probing into the asymptotic region and  reduces 
the dependence of the behaviour on correction terms which are less readily analysed, 
whereas large sample sizes lead to improved statistics. 

The squared end-to-end distance and radius of gyration were measured for each 
walk generated and the mean-squared averages R’, and S’, computed (each step of 
the walk is of unit length). The values are shown in table 1. The results were analysed 
by assuming the asymptotic N-dependence 

RL. - A R N 2 ” ~  (2.1) 

and carrying out a linear regression analysis of log R i .  against log N. The exponent 
vR, amplitude AR and their associated errors are obtained from this computation (e.g., 
de  Groot 1975). The results, as well as those obtained from a similar analysis of S’, 
(exponent vs, amplitude A,)  are summarised in table 2 .  A preliminary report of the 
sc results has appeared elsewhere (Rapaport 1984a). 

Table 1. Measured values of R I  and S: and the relative deviations from the leading-order 
asymptotic predictions. 

R: S I. 
N mean deviation mean deviation 

120 328.7 0.0022 52.01 0.0009 
300 968.3 -0.0021 153.99 -0.0010 

sc 600 2200.8 -0.0016 351.10 0.0006 
I200 5008.9 0.0003 797. IO -0.0020 
2400 I I 390.0 0.00 I3 1820.84 0.0015 

120 295.2 0.000 1 46.89 -0.0010 
300 87 I .O -0.0007 138.67 -0.0003 

BCC 600 1977.4 -0.0001 3 15.28 0.001 5 
1200 4494.0 0.0018 716.21 0.0024 
2400 I O  164.5 -0.0012 1617.43 -0.0026 

The degree of reproducibility of the R’, and S’, results of table 1 can be assessed 
by dividing the walk samples for each N into a number (here 8)  of groups and  
computing the spread of the group means. In each case the spread was close to 1% 
of the overall mean, with an  even smaller uncertainty (0.35%) in the overall mean 
value (this is in contrast with the broad end-to-end distance and  radius of gyration 
distribution whose standard devitations amount to approximately 60% of the means). 
Table 1 also shows the relative deviations of the measured values from the predictions 
of the asymptotic formulae (e.g., (2.1))-the fit is extremely close with deviations in 
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Table 2. Exponent and amplitude estimates derived from SAWS of lengths 120 to 2400. 
(The deviations appearing in table 1 are based on estimates with more significant digits 
than appear here.) 

sc BCC 

vR 0.59 I 9  * 0.0004 0.5909 * 0.0002 
vs 0.5933 i 0.0003 0.591 2 * 0.0004 
A, 1.134*0.005 1.03 1 * 0.003 
A, 0.1772r0.0006 0.1633 * 0.0008 

the range 0.03-0.26% (overall average 0.13%); for this reason there is little to be 
gained by plotting the results. 

The error estimates produced by the regression analysis (table 2) are of course 
incapable of including the effects of minute residual corrections which are too small 
to adversely affect the quality of the fit, but which, nevertheless, could be responsible 
for a slight shift in the exponent values. There is, however, no way of reliably estimating 
the contributions of terms of this kind. Table 2 shows that the exponents ( vR and vs) 
lie between 0.5909 and 0.5933; assuming universality and the equality of vR and vs 
the estimate obtained by averaging the four values is 

v = 0.592 * 0.002. 

The value produced by numerical analysis of the appropriate RG perturbation expansion 
is v = 0.588 * 0.001 (Baker e? a1 1978, Le Guillou and Zinn-Justin 1980); the agreement 
is satisfactory (see also 0 6). The results of series extrapolation will be described in 0 4. 

3. Monte Carlo analysis of scaling corrections 

By considering shorter SAWS than those treated in the preceding section, it should be 
possible to determine the N-dependence of the deviations from asymptotic behaviour 
and whether or not the RG predictions are complied with. In this section we describe 
such a calculation for R’, using the sc lattice. 

Walks ranging in length from 12 to 60 (in increments of 6) were generated using 
a similar MC technique to that described above; because of the small N involved the 
walks were generated directly from the elements. Since the correction terms were 
expected to be comparatively small even at low N, much larger sample sizes are 
required in order to avoid the situation where the statistical uncertainty masked the 
deviation; for each length 2 x lo5 SAWS were generated. 

The relative deviations of the measured R’, values from the predictions of the 
asymptotic result (2.1) are shown in figure 1. The error bars show the spread in values 
when the walks are divided into twenty groups and each analysed separately; for 
N 3 50 it is apparent that the deviations drop below the background of statistical 
‘noise’. The relative deviation is defined as 

6R’, = R$(measured)/ Rk(asymptotic) - 1 ; (3.1 1 

from (1.2) it is clear that the expected N-dependence is given by 

~ R Z ,  - A ,  N - ~ I  + A ~ N - ’  +o( N - I - ~ ) ) .  (3.2) 
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Figure 1. Relative deviations of R j  for short SAWS on the sc lattice from the leading-order 
asymptotic prediction. The abscissa scales are ( a )  N - ' ,  ( b )  N-047. The broken lines are 
visual guides and show the type of behaviour expected if the deviation is due principally 
to the leading correction terms ( a )  N - '  or ( b )  The error bars show the average 
spread of sample means (0.7%). 

Thus, if A ,  < 1 (the RG prediction is A ,  = 0.47, Le Guillou and Zinn-Justin 1980) a plot 
of SRL against N-') should be approximately linear-although for sufficiently small 
N the N-' term will also be apparent. If, on the other hand, the leading-order 
correction is analytic (i.e., proportional to N-'), then linear behaviour ought to be 
seen when SRL is plotted against N-'. In both cases SR$+O as N + w  (N-I or 
N-Al -+ 0). The two possibilities are shown in figure 1 ; the evidence tends to favour a 
leading-order correction that is analytic. 

It could be argued that since the correction coefficient A,  is not predicted by the 
RG, the non-analytic correction may still be present but with small amplitude. The 
counter to this argument is contained in figure 1 :  the analytic N-l correction fits the 
data to within 0.5% down to as low as N = 12 leaving little room for any meaningful 
contribution from the non-analytic term, and higher order (e.g., N-*) corrections are 
available to account for any additional discrepancy as N + 0. Quantitatively, the 
coefficient A, is estimated to be -0.32; if the N-'l term is introduced to help resolve 
the remaining discrepancy the value of the coefficient A ,  is restricted to IAll <0.01. 
The alternative is to assume that the non-analytic term is able to account for the bulk 
of the deviation from the asymptotic result. In this case the value A ,  - -0.06 is obtained 
from the figure. This correction must also be applied to the results for the longer 
walks; for N = 120 it produces a shift of O.6%, a value that is three times the deviation 
(in the wrong direction) of the measured value from the prediction of the leading-order 
asymptotic formula (2.1). In view of the apparent accuracy of the MC measurements 
(see below) and the known uncertainties, there is no way to account for the shift 
demanded by the non-analytic correction. 

The accuracy of the MC method can be demonstrated by directly comparing the 
predictions with exact enumeration results for the sc lattice. For N = 15 the exact 
value of Rk,  is 27.3931 . . . (Martin and Watts 1971) which corresponds to the relative 
deviation SRC = -0.021. When the correction A 2 N - '  is allowed for the deviation 
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drops to  a mere -0.003, a value easily attributable to a combination of higher-order 
corrections and  statistical uncertainty. 

These results should be contrasted with recent series expansion treatment of R’, 
on the FCC lattice (Majid et a1 1983). There it was argued that the inclusion of the 
non-analytic correction is essential to obtain agreement with the RG exponent result. 
In the following section we will show that by analysing the same data in various ways, 
both with and  without the non-analytic correction, it is reasonable to conclude that 
the non-analytic term is not essential to achieve reasonable exponent estimates. At 
this stage it is also appropriate to comment on a recent MC study of the three-dimensional 
SAW that claimed to observe the N-Al correction term (Havlin and Ben-Avraham 1983). 
The quantity measured in that study was not R’, itself, but the set of mean internal 
separations within the walk; the assumption of a length-invariant self-similarity (moti- 
vated by the concept of fractals-Mandelbrot 1982) was then used to derive a measure 
for v. The analysis required the simultaneous determination of both exponent and  
correction term using data from relatively short SAWS ( N  s 320) and sites along each 
walk not more than N / 3  steps apart, with the final choice being based on a visual 
goodness-of-fit criterion. Furthermore, it is apparent from the data that the self- 
similarity assumption is only an approximation, at least for the walk lengths considered. 
Thus, the evidence in support of the non-analytic correction term obtained by that 
analysis is judged inconclusive. 

4. Series expansions for conformational data 

Extrapolation of exact series expansion data provides an alternative means of probing 
SAW asymptotic behaviour (Domb 1969, McKenzie 1976). Prior to the appearance of 
the question of non-analytic corrections it was regarded as sufficient to use simple 
extrapolation techniques; these produced results not inconsistent with the then- 
accepted value v=0.600, both for R’, (Martin and  Watts 1971) and S’, (Rapaport 
1975). With the appearance of the RG estimate for v and the prediction of non-analytic 
corrections it became necessary to handle the extrapolation with greater care to reduce 
the possibility of ambiguity. The most recent result involves the computation of R;  
as far as N = 12 on the FCC lattice and  a n  accompanying analysis which claimed to 
obtain complete agreement with the RG results, both in regard to the exponent value 
and the leading-order non-analytic correction (Majid et a1 1983, hereinafter MDS).  

In this section we present a detailed comparison of the results obtained when the 
FCC R’, series data is analysed both with and  without the non-analytic correction. As 
will become apparent from the results below, there is no compelling evidence in support 
of the presence of the non-analytic terms, hence the results are fully consistent with 
the MC analysis. We also describe a calculation extending the S?, series to the same 
order as R’, and the results of analysing this series. 

The conformational data ( R k  and S’,) were generated by an improved version of 
a counting algorithm used in earlier work (Rapaport  1975). The results are shown 
in table 3. Comparison of the values of c,R’, (these are the actual quantities computed) 
for N = 11 and  12 with those of MDS reveals a discrepancy of a factor of two, although 
this is not reflected in their analysis. The values of S’, for N = 10-12 are new. The 
amount of computation required for the evaluation of Sk is double that for R:; the 
total computer time used was, however, approximately equal to that of MDS (using a 
similar computer), 
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Table 3. Exact enumeration data for the FCC lattice (the step length is unity). 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I O  
1 1  
12 

12 
132 
1404 

14700 
I52 532 
1573 716 

16 172 148 
165 697 044 
1693 773 924 

17281929564 
176064704412 
I791455071068 

12 
288 
4908 

12 144 
915 780 

12 510 768 
154 540 404 
1857 329 520 

21857390724 
252974192304 
2888610412956 

32617398861792 

12 
552 

I5 360 
335 160 
63 12 084 

IO7 605 728 
1706716656 

25627095984 
368595744612 
5120677389624 

69 133013891808 
911241070490664 

In order to decide the form of the correction terms and estimate their sizes the 
data was analysed by computing 

and then using sets of consecutive fN values to fit various versions of the general 
asymptotic expression which follows from ( 1.2), namely 

(S',  will be discussed later.) If only integer powers of N-' are present (i.e., no 
non-analytic terms) then truncation of (4.2) at N - k  produces exponent results identical 
to the kth order Neville table (Gaunt and Guttmann 1974), which itself is equivalent 
to kth-order polynomial extrapolation in the variable N-I. The number of f N  values 
required for each calculation of the unkowns in (4.2) depends on the number of 
correction terms included ( A l ,  if present, is assumed known to avoid the need to solve 
a nonlinear problem). Due to the limited amount of data available and the observed 
lack of smooth behaviour if too many terms are included in (4.2), the coefficient e, is 
set to zero and the comparison is between the results obtained with and without the 
N-'i term. The value A I  = 0.465 is used when required (this is based on the estimate 
A ,  = 0.465 i 0.010 given by Le Guillou and Zinn-Justin 1977 and is used for consistency 
with the analysis in the next section, the latest value is A ,  = 0.470*0.025-Le Guillou 
and Zinn-Justin 1980; this minor adjustment has little effect on the analysis). 

The coefficients of (4.2) obtained from each of the fits are listed in table 4. Case 
(a)  involves the N-"i correction only; the convergence is poor but is improved 
considerably if, as in case (b),  the N-' term is included as well. In (b), the value of 
e ,  is an order of magnitude smaller than f, and still falling rapidly at the last available 
estimate. This behaviour suggests that an attempt is being made to suppress the N-Al 
term and that the coefficient e ,  eventually tends to zero. Support for this assertion 
comes from considering cases (c) and (d) where only analytic corrections to orders 
N-] and iV2 are included; here the estimates of v are further along the path to 
convergence than in case (b). These results clearly show that there is no need to 
include non-analytic corrections in order to obtain a Y estimate in reasonable agreement 
with that of the MC analysis (or RG);  however, in order to examine the quantitative 
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Table 4. Coefficients of R!.+ fit using equation (4.2); coefficients not listed are set to zero. 

6 
7 
8 

( a )  9 
I O  
I I  
12 

7 
8 
9 

I I  
12 

6 
7 
8 

( c )  9 
I O  
I I  
12 

7 
8 
9 

I 1  
12 

(b)  I O  

(d l  10 

0.381 97 
0.424 73 
0.456 32 
0.478 00 
0.493 60 
0.505 42 
0.51465 

0.658 09 
0.660 50 
0.639 85 
0.625 81 
0.617 34 
0.61 1 39 

0.574 98 
0.581 21 
0.586 33 
0.589 36 
0.591 20 
0.592 39 
0.593 18 

0.596 79 
0.601 68 
0.599 97 
0.598 56 
0.597 75 
0.597 12 

2.084 72 
1.643 21 
1.358 36 
1.177 52 
1.052 47 
0.959 68 
0.887 74 

-0.521 04 
-0.535 39 
-0.398 83 
-0.294 38 
-0.225 38 
-0.173 31 

1.997 22 
2.010 46 
1.865 49 
1.741 87 
1.652 64 
1.580 03 

1.597 86 
1.516 39 
1.442 07 
1.393 50 
1.361 15 
1.338 33 
1.321 94 

1.13741 1.096 50 
1.022 62 1.428 60 
1.068 18 1.273 43 
1.11080 1.10663 
1.138 20 0.985 47 
1.161 51 0.870 73 

behaviour more closely it is necessary to consider extrapolations of higher order than 
those of table 4. 

A concise summary of the exponent estimates for various orders of extrapolation 
is available directly from the Neville table. Following the recommendations of MDS, 

several different functions of R L ,  all of which extrapolate to v as N + w ,  were used 
to imbue the results with greater confidence. The functions used were those chosen 
by MDS, with pN denoting R L :  

u ( c )  - 1 2 
N - 2 ( ~ . w + i  - P N ) ( P N  - P N - ~ ) / ( P N - P N + ~ P N ~ ~ ) .  

Note that U$’ differs from t N  (4.1) by a shift of index; while this shift affects the 
lower-order extrapolations, it has negligible effect at  higher order. 

The Neville table results appear in table 5 ;  the k = 0 column gives the actual function 
values. The functions U$) and U$) show small amounts of curvature at  all orders of 
extrapolation, whereas u g )  does not vary smoothly at  higher order. If allowance is 
made for the residual drift then the exponent estimates are again seen to be fully 
consistent with those of the MC calculation. 
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Table 5. Neville tables for the three formulae (4.3) for estimating the exponent Y from 
R:;  k is the order of extrapolation. 

n\k 0 1 2 3 4 

6 0.606 10 0.602 85 0.596 87 
7 0.605 52 0.60201 0.59992 0.603 99 
8 0.604 99 0.601 30 0.599 14 0.597 85 0.591 71 

(a) 9 0.60450 0.60063 0.598 29 0.596 57 0.59498 
10 0.604 06 0.600 04 0.597 71 0.596 38 0.596 08 
1 1  0.603 65 0.599 53 0.597 22 0.595 90 0.595 07 

7 0.59687 0.60274 0.59489 
8 0.597 50 0.601 89 0.599 35 0.60678 
9 0.597 90 0.601 16 0.598 59 0.597 07 0.584 93 

(b) 10 0.598 17 0.60054 0.59804 0.59676 0.59630 
1 1  0.598 33 0.599 95 0.597 31 0.595 38 0.592 96 
12 0.598 42 0.599 40 0.596 63 0.594 57 0.592 94 

7 0.60204 0.597 04 0.619 55 
8 0.601 32 0.596 32 0.594 16 0.551 84 

(c) 9 0.60065 0.595 32 0.591 85 0.587 23 0.631 46 
I O  0.600 07 0.594 85 0.592 93 0.595 44 0.607 77 
I I 0.599 56 0.594 44 0.592 61 0.591 75 0.595 28 

The earlier analysis of MDS followed a somewhat different approach in which 
low-order extrapolants are themselves extrapolated : however the final estimate of v 
was obtained by passing an arbitrarily chosen curve through the second set of 
extrapolants (see MDS, figure l(c)) .  The final estimate was given as v = 0.5875 f 0.0015, 
although it is clear from the analysis that a considerable degree of subjectivity was 
involved in arriving at both the exponent value and the error bound. (Note also that 
although MDS claimed at one stage to have analysed the radius of gyration, their data 
is for end-to-end distances only.) 

The MC data for S’, was analysed in a similar manner. The results of the Neville 
table analysis based on the functions (4.3) appear in table 6. The exponent values 
here are slightly higher than those for R’, (table 5 ) ,  but it is clear that the incomplete 
convergence leaves room for a further drop in v at larger values of N, thereby bringing 
the results into agreement with the MC exponents. The reduced rate of convergence 
of S’, relative to R’, is due to the fact that S’, includes contributions from all possible 
distances between pairs of sites visited by the walk whereas R’, is based only on the 
endpoint separation; the MC results for larger N show a similar degree of convergence 
for both quantities. 

5. Analysis of SAW counts 

The results described in the preceding sections have provided no convincing evidence 
in favour of the existence of non-analytic corrections to scaling and, in fact, suggest 
that the contrary may be true. As pointed out in the introduction the same kind of 
non-analytic correction is also predicted to occur in the asymptotic behaviour of the 
number of N-step SAWS (1.4). The values of cN are available as far as N = 14 for the 
FCC lattice and their analysis has been used to establish the existence of the non-analytic 
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Table 6. Neville tables (see table 5) for S i , .  

n\k 0 I 2 3 

7 0.552 79 
8 0.558 85 

(a )  9 0.56369 
I O  0.56764 
I 1  0.57089 

8 0.549 09 
9 0.555 16 

(b)  I O  0.56007 
1 1  0.564 12 
12 0.567 50 

8 0.605 31 
9 0.605 70 

(') 10 0.60577 
1 1  0.60565 

0.599 23 
0.601 28 
0.602 45 
0.603 12 
0.603 47 

0.602 37 
0.603 65 
0.604 33 
0.604 6 I 
0.604 64 

0.612 51 
0.608 85 
0.606 35 
0.604 5 1 

0.607 78 
0.607 41 
0.606 56 
0.605 78 
0.605 05 

0.609 23 
0.608 I O  
0.607 08 
0.605 88 
0.604 79 

0.599 75 
0.596 04 
0.596 34 
0.596 23 

0.606 79 
0.604 87 
0.603 95 
0.603 12 

0.605 85 
0.604 7 I 
0.602 65 
0.601 54 

0.588 64 
0.597 01 
0.595 96 

term (McKenzie 1979). In  this section we repeat the analysis and show that results 
of equal, or even better quality can be obtained if the non-analytic correction is omitted. 

The correction terms appearing in (1.4) are studied by forming the ratios 

r N  = ck/cN-I  (5 .1 )  

and fitting various versions of the general asymptotic expression based on (1.4), namely 

(5.2) 

to sets of consecutive rN.  Here a ,  = y - I .  This is the same technique used in the 
original analysis (McKenzie 1979); but by looking at the results from a different 
perspective we will show that the original conclusions are not the only ones possible. 

Table 7 summarises the results of the fit calculation. The value A ,  = 0.465 is used 
and, because of the impossibility of handling too many unknowns, b2 = 0. Case ( a )  
shows the results obtained when only the N-' and N-'-Al terms are included. When, 
as shown in case (b)  the N-' term is introduced as well, the value of b ,  drops by a 
factor of 30, and the last few estimates strongly suggest that b ,  + 0. This phenomenon 
was also observed for R', ( §  4) and was interpreted as a sign that the data is attempting 
to suppress the non-analytic term; a similar conclusion is warranted for the SAW count 
series data as well. Cases (c) and (d )  show the corresponding results when only analytic 
corrections to orders N-* and W 3  are included; here an increase in the order of the 
fit functions leads to only a minor adjustment in coefficient values, quite unlike cases 
(a) and (b).  

Estimates of p and y (  = a ,  + 1 )  obtained from cases (c) and ( d )  are 10.0364 and 
1.163 respectively. The uncertainty inherent in these values can be gauged only by 
examining the trends in the tabulated results and the amount of additional variation 
possible before full convergence is achieved. Estimates of this kind are highly subjective 
and amount to little more than educated guesses; a reasonable error estimate in the 
present case is * I  in the last digit of both p and y. The RG estimates for y are 
1.16 1 * 0.003 (Baker et a1 1978) and I .  16 15 * 0.0020 (Le Guillou and Zinn-Justin 1980). 

r,% - p ( 1  + a , N - ' +  b,N- ' - ' l+a,N-*+ ~ , N - * ~ ' ~ + U , N - ~ + O O ( N - ~ ~ ' ~ ) ) ,  
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Table 7. Coefficients of c, fit using equation (5.2); unlisted coefficients are zero. 

7 
8 
9 

I O  

12 
13 
14 

8 
9 

I O  
ib )  I I  

12  
13 
14 

7 
8 
9 

I O  

I 2  
13 
14 

8 
9 

I O  

12 
13 
14 

( a )  1 1  

( c )  I I  

( d )  

10.063 68 
10.034 38 
10.035 51 
10.036 89 
10.037 08 
10.037 16 
10.037 07 
10.036 98 

9.954 59 
10.039 17 
10.042 04 
10.037 87 
10.037 5 1 
10.036 59 
10.036 5 1 

10.053 85 
10.033 6 I 
10.034 60 
10.035 79 
10.036 09 
10.036 27 
10.036 31 
10.036 33 

9.999 86 
10.036 59 
10.038 55 
10.036 89 
10.036 83 
10.036 44 
10.036 41 

0.10447 
0.164 50 
0.161 82 
0.158 12 
0.157 56 
0.157 31 
0.157 64 
0.157 97 

0.5 18 46 
0.143 45 
0.12902 
0.152 58 
0. I54 88 
0.161 24 
0.161 81 

0.141 41 
0. I67 93 
0.16642 
0. I64 39 
0.163 82 
0.163 43 
0.163 34 
0. I63 28 

0.239 35 
0.161 63 
0.15691 
0.161 42 
0.161 59 
0.162 88 
0.162 96 

0.107 51 
0.01071 
0.01 5 34 
0.022 12 
0.023 20 
0.023 70 
0.023 00 
0.022 29 

- 1.097 27 
0.076 60 
0.12473 
0.041 67 
0.033 13 
0.008 48 
0.006 16 

1.062 60 
-0.063 20 
-0.1 12 84 
-0.021 50 
-0.01 1 55 

0.018 60 
0.021 63 

0.094 82 
0.01027 
0.01 5 82 
0.024 33 
0.027 02 
0.029 05 
0.029 55 
0.029 90 

0.482 32 1.133 71 
0.053 70 -0.099 95 
0.091 00 -0.198 40 
0.050 85 -0.078 92 
0.049 17 -0.073 37 
0.034 99 -0.021 65 
0.034 05 -0.0 I7 9 1 

The present estimate is in full agreement with these values, while at the same time 
apparently excluding the pre-Rc value of y = 5 (Sykes et a1 1972). 

Whereas the values of p and y just obtained are unbiased, in the sense that both 
were deduced from the SAW data without assuming anything beyond the presence of 
analytical correction terms, the results of McKenzie (1979) are biased and  were derived 
by selecting a value of y and  then computing p. The task of picking the 'best' value 
of y involves the subjective comparison of the degree of convergence of the p-estimates 
for different y. The value of y deemed best was chosen because it produced three 
final estimates of p which are practically equal. That this is not a particularly reliable 
criterion can be seen by repeating the biased analysis but with non-analytic terms to 
order N-2-A~  included rather than the N-'-Ai term alone; in this instance stationarity 
is observed for y = 1.1667 (the previously accepted value). Clearly the safest form of 
analysis relies on unbiased estimates only. 

Another lesson to be learned from this analysis is that it is not sufficient to monitor 
p by itself; both the variation of the coefficients of the correction terms with N and 
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the effect of changing the order of the fit are important indicators as to what is really 
occurring. The numerical results that reveal the suppression of the leading-order 
non-analytic term for both cN and R k  provide a good example of what can be learned 
from the behaviour of the correction terms. 

6.  Conclusions 

Monte Carlo simulations of three-dimensional self-avoiding walks have shown that 
the results are represented extremely closely (to within 2-3 parts per 1000) by the 
simple power law expressions 

R’, - A ~ N ’ ~ R ,  s’, - A ~ N * ~ ’ S  

with vR = vs = 0.592 i 0.002. These results were obtained by considering walks ranging 
in length from N = 120 to 2400 on both the sc and BCC lattices. When the analysis 
of R’, on the sc lattice was extended down as far as N = 12 it was found that the 
relative deviation from the simple power law could be closely represented by a term 
linear in N - ’ .  The exponent estimate is consistent with the value derived from the 
RG treatment, but the linear deviation at small N is not-the RG predicts a leading 
order N-’ 47 deviation. 

This discrepancy motivated a reanalysis of previous estimates of asymptotic SAW 

behaviour based on series extrapolations which claimed to observe the non-analytic 
corrections required by the RG. The revised extrapolations, both for the SAW counts 
and  for R k ,  produced exponent estimates which are, respectively, in close agreement 
with the RG value of y and  consistent with the MC value of v. These results were 
obtained without resorting to non-analytic corrections. The overall conclusion regard- 
ing the series extrapolation method is that it is unable to make a definitive statement 
either for or against the existence of non-analytic terms; a stricter criterion, namely 
the requirement that the data behave in a regular fashion under successive orders of 
approximation, favours the absence of non-analytic correction terms. 

At this juncture it is appropriate to recall the fact that the RG addresses a continuum 
model; while it is reasonable to expect that universality applies to the leading-order 
exponents, there is no guarantee that the discrete lattice in which the SAW is embedded 
has no effect on the correction terms. The actual numerical exponent estimates derived 
by RG methods are themselves subject to problems of accuracy and convergence, and  
caveats have been issued by those responsible for the results (Le Guillou and  Zinn-Justin 
1980, Nickel 1982). Finally, RG does not predict the amplitudes of the non-analytic 
corrections; if they turn out to be sufficiently small they will not be observable in the 
kinds of calculation described here. 

A similar situation has arisen for the two-dimensional SAW. The exponent v has 
been shown (by a plausible but non-rigorous argument) to have the value $ (Nienhuis 
1982). The RG prediction is v=O.77 (no  error bounds were given) and  a correction 
term N-Al with A ,  = 1.2 (Le Guillou and Zinn-Justin 1980). Recent MC analysis using 
the self-similarity idea (as discussed in Q 3) yielded v = 0.753 * 0.004 and  A ,  = 1.2 * 0.1 
(Havlin and  Ben-Avraham 1983). Series extrapolation of R k  on the triangular lattice 
(Djordjevic et a1 1983, see also Privman 1984) gave the results v = 0.750 and  A ,  = 
0.66 * 0.07, a correction exponent far removed from the RG result. Analysis of the SAW 
counts (Guttmann 1984) failed to find any evidence in support of a value of A ,  
significantly below unity (see, however, Adler (1983) for an  alternative point of view). 
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Finally, an MC study similar to that of the present article yielded v = 0.7488 * 0.0009 
for R L  on the triangular lattice, and the same apparent absence of non-analytic 
correction terms observed in three dimensions (Rapaport 1985). It is difficult to 
envisage a situation in which the leading-order correction has an exponent A ,  > 1 ; 
while not completely impossible it is reasonable to expect that, if no non-analytic term 
with A ,  < 1 is present, then the leading-order correction will be the analytic term N-'. 
A term of this kind may be invisible to the RG since the correction to scaling exponent 
originates in the singular part of the free energy (Wegner 1972), whereas the N-' 
correction could arise from the analytic parts of the generating functions whose 
coefficients are the numbers cN and cNRL (namely the susceptibility and second 
spherical moment series of the SAW). Why no such N - '  term was observed in the 
earlier MC study (Havlin and Ben-Avraham 1983) is not clear. 

The close agreement between the exponent estimate obtained when the present MC 

technique is applied to the two-dimensional problem and the theoretical value U =: 
provides additional evidence in support of the accuracy claimed for the MC method. 
Finally, a similar study in four dimensions (Rapaport 1984) clearly reveals the presence 
of logarithmic corrections consistent with the RG prediction. 
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